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ABSTRACT 

Background: Nickel chloride (NiCl2) induces neurotoxicity by triggering harmful effects in the nervous system, thereby promoting oxidative 
stress, apoptosis, and ultimately neuronal death. Rutin, a dietary flavonoid, acts as a potent antioxidant, protecting cells from oxidative 
damage. Accordingly, this study investigated the activity of rutin in the hippocampus of NiCl2-exposed rats.  
Materials and Methods: Forty-eight Wistar rats, randomly distributed into six groups (n=8), were treated for twenty-eight days as follows: 
Group A – Control; Group B - 5 mg/kg body weight (bw) NiCl2; Group C - 50 mg/kg bw rutin and 5 mg/kg bw NiCl2; Group D - 100 mg/kg bw 
rutin and 5 mg/kg bw NiCl2; Group E - 50 mg/kg bw rutin; Group F – 100 mg/kg bw rutin. Thereafter, neurobehavioural, antioxidant, lipid 
peroxidation, histological, gene expression, and in-silico assessments were done.  
Results: The findings showed that the NiCl2 caused a significant decrease (P<0.05) in spontaneous alternation and discrimination index, as 
well as antioxidant enzymes, following comparison to control. A significant increase (P<0.05) was noticed in lipid peroxidation and 
microstructural alterations in the hippocampus of NiCl2-treated rats. Furthermore, a significant downregulation (P<0.05) in NRF-2 
expression and a significant upregulation (P<0.05) in Caspase-3 expression were observed following NiCl2 exposure. However, these effects 
were inhibited in the NiCl2-exposed rats pretreated with rutin. Also, in-silico docking results revealed that rutin had a strong binding affinity 
with AChE and BDNF, thus demonstrating its therapeutic potential against cognitive disorders.  
Conclusion: Taken together, these findings demonstrate that rutin attenuated NiCl2 toxicity in the hippocampus of rats, possibly via its ability 
to modulate NRF-2, AChE and BDNF activity.  
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INTRODUCTION 

Metals play vital functions within the human body, such as 

upholding cell structure, regulating gene expression, 

facilitating antioxidant response, and enabling 

neurotransmission (1). Elevated metal absorption in the 

nervous system poses risks as it can induce oxidative stress, 

interfere with mitochondrial function, and hinder the 

operation of diverse enzymes (2). Nickel, a recognized heavy 

metal, exists in the environment at very low concentrations. It 

is present in all types of soil, meteorites, and is emitted from 

volcanic activities. In the environment, nickel primarily binds 

with oxygen or sulfur, forming oxides or sulfides in the earth's 

crust (3). The extensive industrial utilization of nickel in its 

production, recycling, and disposal has resulted in widespread 

environmental contamination.  

Nickel is released into the atmosphere through nickel mining  

 

and various industrial processes, including power plants, 

incinerators, rubber and plastic industries, nickel-cadmium 

battery industries, and electroplating industries (3). The 

extensive use of nickel in various industries, as well as 

occupational exposure, poses significant risks to human 

health. Heavy metals like nickel have the potential to generate 

free radicals from diatomic molecules through a double-step 

process, leading to the production of superoxide anions (4). 

Free radicals are molecular structures characterized by one or 

more unpaired electrons in atomic or molecular orbitals. 

These harmful free radicals instigate a chain reaction and 

initiate lipid peroxidation in membrane-rich structures 

containing phospholipids, such as mitochondria and 

endoplasmic reticulum, leading to oxidative, mitochondrial, 

and endoplasmic reticulum stress. In addition, free radicals 

instigate various biological processes, including apoptosis, 

necrosis, ferroptosis, and autophagy (5). 

Antioxidants inhibit the oxidation of species, thereby 

controlling the generation of free radicals (6, 7). Cellular 

antioxidant enzyme systems, such as superoxide dismutase,  
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catalase, glutathione peroxidases/reductase, as well as non-

enzymatic antioxidants like tocopherols, vitamin C, and 

glutathione, among others, along with various dietary 

components, play crucial roles in safeguarding cells and 

organisms against the harmful effects of free radicals (8). 

Polyphenolic compounds, including flavonoids, phenolic 

acids, and anthocyanins, are well-known for their ability to 

scavenge free radicals, act as antioxidants, and chelate iron (9). 

Rutin is a distinctive antioxidant flavonoid predominantly 

present in fruits, vegetables, cereals, and various other plant-

based components of human diets (10). Rutin is known for its 

strong antioxidant and anti-inflammatory properties (10, 11). 

Pharmacological studies have documented the beneficial 

effects of rutin in numerous disease conditions, showcasing its 

therapeutic potential in various models of neurodegenerative 

diseases (12-14). These effects include the reduction of 

proinflammatory cytokines, enhancement of antioxidant 

enzyme activities, activation of the mitogen-activated protein 

kinase cascade, downregulation of proapoptotic genes, 

upregulation of antiapoptotic genes, and restoration of the 

activities of mitochondrial complex enzymes (10). Rutin 

and/or its metabolites possess the capability to traverse the 

blood-brain barrier, and can alter cognitive and behavioral 

symptoms associated with neurodegenerative disorders (15). 

The current study addresses a notable gap in scientific 

literature regarding the role of Rutin in mitigating nickel-

induced toxicity in Wistar rats, and findings from this study 

will provide significant insights into the neuroprotective 

effects of Rutin. Such insights could be instrumental in the 

development of novel neuroprotective drugs aimed at 

effectively managing nickel neurotoxicity and its associated 

neurological disorders. 

MATERIALS AND METHODS 

Chemicals and reagents 

Rutin (C27H30O16; purity ≥94% HPLC) was purchased from 

Sigma-Aldrich (St. Louis, MO, USA), and Nickel Chloride 

(NiCl2.6H2O; purity ≥98%) was manufactured by Molychem, 

Mumbai, India. Other reagents were all of the analytical grade. 

Care and Management of Experimental Animals 

A total of Forty-eight Wistar rats were bought and kept in the 

Department of Anatomy animal holdings. After 

acclimatization for two weeks, the experimental procedures 

followed the guidelines of the Research Ethics Committee of 

the College of Medical Sciences, University of Benin, Nigeria, 

with approval number CMS/REC/2024/576. 

Experimental design 

The rats were distributed to six (6) different groups (n=8). The 

experimental design was as follows: 

 Group A (control) - 1 ml of distilled water  

 Group B (NiCl2) - 5 mg/kg body weight (BW) of Nickel 

Chloride (NiCl2) only.  

 Group C (RU1 + NiCl2) - 50 mg/kg BW/day of rutin (RU) 

and 5 mg/kg BW of NiCl2.  

 Group D (RU2 + NiCl2) - 100 mg/kg BW/day of rutin and 

5 mg/kg BW of NiCl2. 

 Group E (RU1) - 50 mg/kg BW/day of rutin.  

 Group F (RU2) - 100 mg/kg BW/day of rutin. 

Rutin and NiCl2 were administered orally and 

intraperitoneally, respectively, for 28 days. 

Neurobehavioural Evaluation 

Novel Object Recognition Test: This test was carried out in 

a wooden open box device (80 × 60 × 40 cm), as previously 

described (16, 17). The discrimination was determined by 

equating the time spent exploring the familiar and Novel 

Object (16, 17). For quality control, a discrimination index 

(DI) was calculated as follows:  

Discrimination Index = Novel Object – Familiar Object 1 / 

Novel Object + Familiar Object 1.  

Y-Maze test: This test was carried out in a wooden apparatus 

consisting of three identical arms (33×11×12cm each) which 

are symmetrically separated at 120° with an equilateral 

triangular central area, as previously described (18, 19). An 

arm entry was recorded when the hind paws of the rat were 

completely within the arm, and spontaneous alternation 

behaviour was defined as three consecutive entries in three 

different arms (18, 19). The percentage of alternation was 

calculated as the total of alternations / (total arm entries –

2×100).  

Evaluation of biochemical parameters 

The hippocampus was homogenized in ice-cold 20 mM Tris-

HCl buffer (pH 7.4), and the homogenate was then centrifuged 

at 10,000 g for 10 min at 4°C (20, 21). The supernatant was 

collected and evaluated for Catalase – CAT (22), Superoxide 

dismutase – SOD (23), and Malondialdehyde – MDA (24). 

Histological evaluation 

After suitable fixation of the hippocampus in 10% buffered 

formal saline for 72 h, processing through the paraffin wax 

embedding and the Hematoxylin and Eosin staining method 

was done as previously described (25). 

 

Gene Expression Assessment 

Using real-time quantitative reverse transcription PCR, an 

assessment of Caspase-3 and NRF-2 gene expression was done 

as previously described (26). Briefly, using freshly excised 

hippocampi, total RNA was extracted and DNA was purified 

following DNAse I treatment (NEB, Cat: M0303S) according 

to the manufacturer's instructions. Purified DNA-free RNA 

was converted to cDNA immediately using the M-MuLV 
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Reverse Transcriptase Kit (NEB, Cat: M0253S) (26). PCR 

amplification was done using OneTaq® 2X Master Mix (NEB) 

with the primer set shown below (Table 1).  

Molecular docking study  

In-silico molecular docking of rutin was performed on 

Acetylcholinesterase (AChE) and Brain-Derived Neurotrophic 

Factor (BDNF). The structures (PDB ID: 4pqe, 1b8m, 

respectively) were obtained from the Protein Data Bank. Using 

Auto Dock Vina Software, a docking investigation was carried 

out as previously described (28), and the binding 

affinities/energies were reported in Kcal/mol. The renderings 

for the 2D diagrams and 3D (surface) view of the interactions 

were computed using the BIOVIA Discovery Studio 2019 and 

the PyMOL Molecular Graphics Software, respectively, as 

previously reported (29). 

Table 1: Experimental Genes and Primers 

Primer Name Primer Sequence (5′-3′) Gene Accession Number 

NRF-2 Forward: GTCAGCTACTCCCAGGTTGC 

Reverse: ATATCCAGGGCAAGCGACTG 

NM_001399173.1 

Caspase-3 Forward: GAGCTTGGAACGCGAAGAAA 

Reverse: CCATTTTGTAACTGCTGTCCAGA 

NM_012922.2 

Gel density quantification was carried out using Image-J software, and data were reported relative to the β-actin gene (27).

Statistical analysis 

Analysis of data was carried out using the GraphPad Prism 

Software V9. One-way analysis of variance (ANOVA) 

followed by Tukey’s multiple comparisons post hoc test was 

utilized to determine statistical significance (p < 0.05). Values 

are presented as Mean ± Standard Error of Mean (SEM). 

 

RESULTS 

Effect of treatment on Neurobehaviour 

A significant decrease (P<0.05) was observed in the 

discrimination index of the NiCl2-treated group B rats when 

compared to control. However, a significant increase (P<0.05) 

was observed in the rutin pretreated rats (RUT1 + NiCl2 and 

RUT2 + NiCl2) when compared to the NiCl2-treated group B 

rats (Figure 1).  
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Figure 1: Discrimination index of control and treatment 

groups after 28 days. # p< 0.05 compared with the control 

group; * p<0.05 compared with the NiCl2-alone group. 

In addition, there was a significant decrease (P<0.05) in the 

number of total alternations and spontaneous alternations in 

the NiCl2-treated group B rats when compared to control, 

however, a significant increase (P<0.05) was observed in the 

rutin pretreated rats (RU1 + NiCl2 and RU2 + NiCl2) when 

compared to the NiCl2-treated group B rats (Figure 2). 

Effect of Treatment on Oxidative Stress  

Here, a significant decrease (P<0.05) in SOD and CAT was 

observed in the NiCl2-treated group B rats when compared to 

control. However, a significant increase (P<0.05) was 

observed in the rutin pretreated rats (RU1 + NiCl2 and RU2 + 

NiCl2) for CAT, and in the rutin pretreated rats group D (RU2 

+ NiCl2) for SOD, following comparisons to the NiCl2-treated 

group B rats (Figure 3). For MDA, a significant increase 

(P<0.05) was observed in the NiCl2-treated group B rats when 

compared to control. However, a significant decrease (P<0.05) 

was observed in the rutin pretreated rats (RU1 + NiCl2 and 

RU2 + NiCl2) when compared to the NiCl2-treated group B rats 

(Figure 3). 

Effect of Treatment on Hippocampal Histology  

Plate 1A-F shows the representative histology of the 

hippocampus CA1 in control and treatment rats. Plate 1A 

(Control group) revealed the normal structure of pyramidal 

cells and astrocytes. Plate 1B (NiCl2 treated) showed atrophy 

and vacuolated pyramidal cells and astrocytes. Plates 1C & 1D 

(RU1+ NiCl2 and RU2 + NiCl2) showed fewer vacuolations 

and relatively normal pyramidal cells. Plates 1E & 1F (RU1 

and RU2) showed relatively normal pyramidal cells and 

astrocytes. 

Effect of Treatment on Gene Expression 

There was a significant decrease (P<0.05) in NRF2 expression 

in the hippocampus of NiCl2-treated group B rats when 

compared to control. However, a significant increase (P<0.05) 

was observed in the hippocampus of rutin pretreated rats (RU1 
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+ NiCl2 and RU2 + NiCl2) when compared to the NiCl2-treated 

group B rats. Also, there was a significant increase (P<0.05) in 

Caspase-3 expression in the hippocampus of NiCl2-treated 

group B rats when compared to control. However, a significant 

decrease (P<0.05) was observed in the hippocampus of rutin 

pretreated rats (RU1 + NiCl2 and RU2 + NiCl2) when 

compared to the NiCl2-treated group B rats. 

In-silico Findings 

Table 2 represents the binding energy and interaction of rutin 

against NF-kB. Also, Figures 5 and 6 show the 2D and 3D 

(active site) views of rutin against NF-kB. 

 
Figure 2: Y-maze parameters of control and treatment groups after 28 days.  # p< 0.05 compared with the control group; * p<0.05 

compared with the NiCl2-alone group. 

 

 

 
Figure 3: Oxidative stress assessment in the hippocampus of control and treatment groups after 28 days. # p< 0.05 compared 

with the control group; * p<0.05 compared with the NiCl2-alone group 

http://www.jbamsonline.org/


Enogieru and Osemwengie: Rutin inhibits nickel-induced hippocampal toxicity                                                       J Basic and Appl Med Sci 2025, 5(1) 
www.jbamsonline.org  

5 
 

 
Plate 1: Representative Histology of the Hippocampus across experimental groups. (A) Control - normal Pyramidal cells 

[arrows]. (B) NiCl2 group - atrophy and vacuolated pyramidal cells [double arrows] and astrocytes [curved arrows] (C) RU1 + 

NiCl2 - normal Pyramidal cells (V) (D) RU2 + NiCl2 - normal Pyramidal cells (E) RU1 - normal Pyramidal cells (F) RU2 - 

normal Pyramidal cells (H&E; 400x; Scale bar: 25µm

 
Figure 4: Expression of NRF-2 and Caspase-3 in the Hippocampus of rats across experimental groups. # p<0.05 compared with 

the control group; * p<0.05 compared with the NiCl2 group. 
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Table 2: Binding energy against IL-6 

Compound AChE (Kcal/mol) BDNF (Kcal/mol) 

Rutin - 8.6 - 7.4 

 

 
Figure 5: 2D and 3D surface view of rutin at the active site of AChE. 

 
Figure 6: 2D and 3D surface view of rutin at the active site of BDNF. 

DISCUSSION 

Exposure to nickel in both environmental and occupational 

settings can lead to toxicity in multiple organs such as the liver, 

kidneys, lungs, skin, gonads, and brain. Notably, exposure to 

nickel specifically targets the nervous system, leading to a 

range of neurological symptoms (30). This study examined the 

impact of NiCl2 on neurobehavior, oxidative stress, 

hippocampal histomorphology, and gene expression levels of 

NRF-2 and Caspase-3, as well as the protective role of rutin 

pretreatment in Wistar rats. 
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The hippocampus constitutes a vital component of the limbic 

lobe, playing a crucial role in memory processing, learning, 

spatial navigation, and emotions. It is instrumental in spatial 

navigation and the consolidation of information from short-

term memory into long-term memory (31). Hippocampal 

neurons encode various physical variables, such as space or 

auditory frequency, within cognitive maps. The presence of 

integrated cognitive maps implies that the hippocampus 

engages in a fundamental computation, generating task-

specific low-dimensional structures that encapsulate a 

geometric representation of acquired knowledge (32). The Y-

maze test is utilized as an assessment of spatial working 

memory, employed to measure cognitive impairment, 

particularly in learning and memory domains (18, 19, 33). This 

assessment relies on observing animals' spontaneous 

alternation behavior, which indicates their cognitive abilities 

(34). In this study, a significant decrease in total alternation 

and spontaneous alternation behavior was noted in the rats 

exposed to NiCl2 when compared to the control group, 

indicating cognitive impairment. This finding aligns with 

previous studies demonstrating that toxicity from NiCl2 results 

in cognitive impairment (35, 36). The novel object recognition 

test (NOR) is a two-trial cognitive paradigm used to assess 

recognition memory (37, 38). In this study, the rats exposed 

solely to NiCl2 exhibited significantly diminished 

discrimination index when compared to the control rats. The 

NiCl2-exposed rats exhibited a very low discrimination index, 

suggesting an inability to distinguish between familiar and 

novel objects. These findings correlate with previous studies 

reporting that NiCl2 toxicity causes a decline in hippocampal 

function and cognitive ability (39, 40). However, pretreatment 

of NiCl2-exposed rats with rutin, a significantly higher 

spontaneous alternation and discrimination index was 

observed in the rats, demonstrating its capacity to enhance 

cognition and memory. 

Reactive oxygen species are closely associated with declining 

health and neurological disorders such as Alzheimer’s and 

Parkinson’s diseases. They are known by-products of cellular 

processes, particularly mitochondrial respiration, and their 

increased reactivity is linked to the damage of macromolecules 

such as proteins, lipids, and DNA (41). Prolonged exposure to 

both endogenous and exogenous reactive oxygen species leads 

to structural and oxidative changes in crucial biomolecules. 

Chronic oxidative stress is correlated with modifications 

occurring in key biomolecules, including lipid peroxidation, 

protein carbonylation, and DNA damage, such as strand breaks 

or nucleobase oxidation. This oxidative stress is intimately 

associated with neurodegenerative processes (10, 42). 

Antioxidant enzymes stabilize or deactivate free radicals 

before they harm cellular components by reducing their energy 

or donating electrons to render them stable. They also 

intervene in the oxidizing chain reaction to mitigate damage 

caused by free radicals (43). This study showed a significant 

decrease in the antioxidant enzymes activity of SOD and CAT 

in the hippocampus of NiCl2-exposed rats. This indicates that 

NiCl2 exposure can alter antioxidant functions by inhibiting 

antioxidant enzymes activity and promoting the generation of 

reactive oxygen species, in agreement with previous studies 

(40, 44). However, pre-treatment with rutin was able to 

mitigate the dysregulation of antioxidant enzymes in nickel-

exposed rats, thus demonstrating the potent antioxidant 

activity of rutin. The extent of lipid peroxidation in biological 

samples can be assessed by measuring the concentration of 

malondialdehyde (MDA). MDA is an end product of lipid 

peroxidation and is widely recognized as one of the most 

prominent and dependable biomarkers for lipid peroxidation 

and oxidative stress (45). The study demonstrated a notable 

increase in MDA activity in the hippocampus of rats treated 

solely with NiCl2, and aligns with findings from other studies 

(35, 40). However, rutin was effective in mitigating this effect, 

thus suggesting its ability to protect against NiCl2-induced 

oxidative stress. 

Memory formation relies significantly on the hippocampus 

(46). The hippocampal CA1 field integrates a wide array of 

subcortical and cortical inputs. It exhibits excitatory 

properties, targeting dendritic spines, and displays a 

characteristic macular shape across different layers examined 

(47). CA1 is instrumental in the retention of social memory, 

particularly in behavioral neuroscience and neurophysiology, 

elucidating its functional role in encoding and storing social 

experiences (48). In this study, the CA1 region of the 

hippocampus in control rats revealed normal architecture with 

intact pyramidal cells and astrocytes. In contrast, NiCl2-treated 

rats exhibited altered morphology, characterized by 

vacuolation of pyramidal cells and astrocytes, as well as 

pyknotic nuclei within the pyramidal cells. These 

morphological changes align with previous neuropathological 

findings on the toxic effects of NiCl2 on brain structure (40, 

44, 49). Specifically, these alterations are associated with 

impairments in both short-term and long-term memory 

functions. In rats pretreated with rutin, the hippocampus 

displayed little or no vacuolations and normal pyramidal cells 

when compared to those treated with NiCl2 alone, thus 

indicating its protective activity. Additionally, rats treated with 

rutin alone exhibited hippocampal histology similar to the 

control group, suggesting that rutin was not toxic to the rats. 

The Nuclear factor erythroid 2-related factor 2 (NRF-2), acting 

as a master regulator of redox homeostasis, serves as a key 

transcription factor overseeing the expression of numerous 

genes encoding antioxidant and detoxification enzymes (50). 

NRF-2 governs the physiological balance of cellular redox 

status and manages responses to stress and inflammation (51). 

It responds to oxidative stress by promoting the expression of 

numerous cytoprotective genes, including those governing 

mitochondrial and non-mitochondrial antioxidant proteins 

(52). In this study, a significant downregulation in the 

expression of NRF-2 was observed in the hippocampus of rats 

exposed to NiCl2. This is consistent with previous studies 

demonstrating reduced expression of NRF-2 with nickel 
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exposure in the liver and kidney (53, 54). Nevertheless, pre-

treatment with rutin was able to upregulate the expression of 

NRF-2 in the hippocampus of rats, thus affirming its protective 

effects against oxidative stress. Caspase-3, a commonly found 

member of a conserved protein family, is widely 

acknowledged for its activated proteolytic functions in driving 

apoptosis (55). This process occurs in cells responding to 

various extrinsic or intrinsic triggers of programmed cell 

death. Neuronal apoptosis occurs through excessive 

production of free radicals, calcium overload, and 

excitotoxicity, leading to the opening of mitochondrial 

permeability transition pores and facilitating the translocation 

of apoptogenic proteins such as cytochrome c into the cytosol 

(56). Cytochrome c interacts with apoptotic protease-

activating factor-1, activating pro-caspase-9, which 

subsequently activates caspase-3, essential for apoptosis 

execution. In this study, the expression of caspase-3 was 

significantly upregulated in the hippocampus of NiCl2-treated 

rats; this is consistent with previous studies demonstrating 

elevated caspase-3 expression upon exposure to nickel (44, 

57). However, rutin significantly inhibited the expression of 

caspase-3, thus demonstrating its anti-apoptotic effects against 

NiCl2 toxicity. 

Findings from the in-silico docking analysis revealed that rutin 

interacted with AChE, the enzyme responsible for breaking 

down the neurotransmitter acetylcholine, which plays a role in 

the development and progression of neurodegenerative 

diseases like Alzheimer's. Reports indicate that overactivity of 

AChE causes a decrease in acetylcholine, contributing to the 

degeneration of the cholinergic system, which is crucial for 

cognitive function (37, 58). AChE also interacts with amyloid-

beta (Aβ) peptides, which are key components of the plaques 

found in Alzheimer's, potentially accelerating their 

aggregation and increasing neurotoxicity (59). Understanding 

the role of AChE in neurodegenerative diseases highlights the 

potential of targeting this enzyme for therapeutic interventions. 

This strong interaction with AChE aligns with previous studies 

indicating that rutin inhibits the excessive activity of AChE 

(60, 61). Inhibition of Brain-Derived Neurotrophic Factor 

(BDNF) signaling is implicated in several neurodegenerative 

diseases, such as Alzheimer's and Parkinson's (62). Reduced 

BDNF levels are associated with neuronal loss, altered 

synaptic function, increased neuroinflammation, tau protein 

phosphorylation, amyloid (Aβ) accumulation, and neuronal 

apoptosis (63). BDNF levels are often decreased in 

Parkinson's, and lower levels are correlated with cognitive 

impairment and depression. The strong and stable interaction 

with BDNF aligns with previous studies indicating that rutin 

upregulates the expression of BDNF (64, 65), thus 

demonstrating its cognition-enhancing effects and its role as a 

possible therapeutic agent against cognitive disorders.  

Conclusion: The results of this study suggest that rutin 

possesses strong neuroprotective properties and may have 

potential applications in the treatment and management of 

neurological disorders associated with nickel exposure. 

Additional investigations in other experimental models are 

encouraged to corroborate these findings. Furthermore, there 

is a need for studies into the potential synergistic effects of 

rutin in combination with other neuroprotective compounds. 
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